

Welcome to the recipes book on UIKit with SwiftUI. This book contains
solutions to the common problems you will encounter, when using
SwiftUI in a UIKit application and vice versa.

GitHub: https://github.com/azamsharp/UIKitUsingSwiftUIRecipes

You can also follow me on Twitter @azamsharp

How to load a SwiftUI view as a separate view in a UIKit
application?

One of the best things about SwiftUI is that it is interoperable with UIKit
framework. This means, views created in SwiftUI can easily be loaded into
existing UIKit applications. In Listing 1 we have created a StocksScreen in
SwiftUI, which displays information about few stocks.

struct StockListScreen: View {

 let stocks = [Stock(name: "MSFT", price: 250), Stock(name: "AAPL", price:
140.56),Stock(name: "TSLA", price: 450), Stock(name: "AMZN", price: 120.00)]

 var body: some View {
 List(stocks) { stock in
 HStack {
 Text(stock.name)
 Spacer()
 Text(stock.price.formatAsCurrency())
 }
 }.navigationTitle("Stocks")
 }
}

Listing 1: StockListScreen SwiftUI view

The output is shown in Figure 1.

Figure 1: StockListScreen SwiftUI view

Now, if we want to load StockListScreen view in our UIKit application then we
can do that using the implementation in Listing 2.

class ViewController: UIViewController {

 lazy var navigateToStocksButton: UIButton = {
 let button = UIButton(type: .roundedRect)
 button.setTitle("Navigate to Stocks", for: .normal)
 button.translatesAutoresizingMaskIntoConstraints = false
 return button
 }()

 override func viewDidLoad() {
 super.viewDidLoad()
 self.view.backgroundColor = UIColor.green

 navigateToStocksButton.addAction(UIAction { _ in

self.navigationController?.pushViewController(UIHostingController(rootView:
StockListScreen()), animated: true)
 }, for: .touchUpInside)

 self.view.addSubview(navigateToStocksButton)

 // setup constraints ….
 }

}

Listing 2: UIKit controller navigating to the StockListScreen on button press

The heart of this integration between UIKit and SwiftUI is the
UIHostingController. UIHostingController allows to manage the SwiftUI view
hierarchy. If you run the app and tap on the “Navigate to Stocks” button then it
will perform a navigation and take you to the StockListScreen (SwiftUI View).

How to embed an existing SwiftUI view into a UIKit UIView?

There are situations where you want to insert a SwiftUI view into an existing
UIKit view instead of displaying a brand new view implemented in SwiftUI.
Listing 3 shows implementation of a RatingView in SwiftUI.

import SwiftUI

struct RatingView: View {

 @Binding var rating: Int?

 private func starType(index: Int) -> String {

 if let rating = self.rating {
 return index <= rating ? "star.fill" : "star"
 } else {
 return "star"
 }

 }

 var body: some View {
 HStack {
 ForEach(1...5, id: \.self) { index in
 Image(systemName: self.starType(index: index))
 .foregroundColor(Color.orange)
 .onTapGesture {

 self.rating = index
 }
 }
 }
 }
}

Listing 3: RatingView implementing in SwiftUI

RatingView is responsible for displaying star ratings to the user. If we want to
display RatingView in our existing UIKit view then we will take help from the
UIHostingController. This is shown in Listing 4.

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()
 self.view.backgroundColor = .white

 let hostingController = UIHostingController(rootView:
RatingView(rating: .constant(3)))

 guard let ratingsView = hostingController.view else { return }
 self.addChild(hostingController)

 self.view.addSubview(ratingsView)

 // add constraints on the ratings view

 }

}

Listing 4: Adding RatingView to the ViewController

First we add the RatingView as a rootView to the UIHostingController. Next we
add the hosting controller as a child controller to the container controller.
Finally, we add the ratingsView to the main view. Make sure to add constraints to
the ratingsView so it can be centered on the screen. Figure 2 shows the final
result.

Figure 2: RatingView added to the UIKit view

How to send a value from a SwiftUI view to a UIKit view?

Loading a SwiftUI view and embedding it into a UIKit view is great, but
sometimes we need to access a value from a SwiftUI view into our UIKit view. For
this scenario, we will be working on the same RatingView with one limitation, we
are not allowed to change the implementation of the RatingView.

This will certainly spice things up!

Our first implementation is shown in Listing 5.

class ViewController: UIViewController {

 @State private var rating: Int? = 3

 override func viewDidLoad() {
 super.viewDidLoad()
 self.view.backgroundColor = .white

 let hostingController = UIHostingController(rootView:
RatingView(rating: $rating))

 guard let ratingsView = hostingController.view else { return }
 self.addChild(hostingController)

 self.view.addSubview(ratingsView)

 // add constraints on the ratings view

 }

Listing 5: Using @State inside the ViewController

We are creating a rating variable inside the ViewController and decorating it with
@State property wrapper. Later we passed rating as a binding to the RatingView.
All looks nice but when you run the app, you will get the following warning.

Accessing State's value outside of being installed on a View. This will result
in a constant Binding of the initial value and will not update.

The warning is due to the fact that you are trying to access @State property
wrapper outside the SwiftUI view and that is not allowed.

One way to solve this problem is to pass a ObservableObject to the RatingView
and update one of the properties of that ObservableObject. But remember, we
are not allowed to change the implementation of the RatingView.

Another method that was suggested by Asperi and Andrew here involves
wrapping the RatingView with a container/parent view. This is implemented in
Listing 6.

https://twitter.com/asperi_se
https://twitter.com/IamThatAndrew
https://twitter.com/azamsharp/status/1540838477599752192?s=20&t=SPpTlrB2v3L8tFIalQ0iFg

class ViewController: UIViewController, ObservableObject {

 @Published var rating: Int? = 3
 var cancellable: AnyCancellable?

 lazy var ratingLabel: UILabel = {

 let label = UILabel()
 label.translatesAutoresizingMaskIntoConstraints = false
 label.textAlignment = .center
 return label

 }()

 private struct HolderView: View {

 @ObservedObject var vc: ViewController

 var body: some View {
 RatingView(rating: $vc.rating)
 }
 }

 override func viewDidLoad() {
 super.viewDidLoad()
 self.view.backgroundColor = .white

 let hostingController = UIHostingController(rootView: HolderView(vc:
self))

 guard let ratingsView = hostingController.view else { return }
 self.addChild(hostingController)

 self.view.addSubview(ratingsView)

 self.cancellable = $rating.sink { [weak self] rating in

 if let rating {
 // Now you have access to the rating
 self?.ratingLabel.text = "\(rating)"
 }
 }

 // stack view
 let stackView = UIStackView(arrangedSubviews: [ratingLabel,
ratingsView])
 stackView.axis = .vertical

 self.view.addSubview(stackView)

 // add constraints on the ratings view

 }

}

Listing 6: Container view to wrap RatingView to access ObservedObject

The main point to note in Listing 6 is the implementation of the HolderView.
HolderView acts as a container for the RatingView and sets ViewController as an
observed object. The ViewController consists of a property “rating” which is
marked with @Published. This means when this property is set, it publishes an
event which is handled in the view controller. ViewController subscribes to the
rating by using the sink function and this allows the ViewController to get the
latest value from the RatingView, without changing the implementation of the
RatingView.

How to communicate between a UIKit view and SwiftUI view using
a View Model?

In Listing 6, we loaded a SwiftUI view inside a UIKit view through the use of a
container view (HolderView). Another way to communicate between a UIKit and
SwiftUI view is by using a View Model. In this example, we will create a SwiftUI
counter view. When the counter is pressed the updated value is passed to the
UIKit and displayed on the label.

We will start by creating our CounterView and the CounterViewModel as shown
in Listing 7.

class CounterViewModel {
 @Published var value: Int = 0
}

struct CounterView: View {

 let vm: CounterViewModel

 var body: some View {
 Button("Increment") {

 self.vm.value += 1
 }.buttonStyle(.borderedProminent)
 }
}

Listing 7: Implementation for CounterViewModel and CounterView

The CounterViewModel consists of a single property called value, which is
marked with the @Published attribute. CounterViewModel is not decorated
with the @ObservableObject since the CounterView has no intention of holding
or displaying the counter value. Once, the button is pressed we simply increment
the value property of the view model.

Now, let’s take a look at the CounterViewController implementation in Listing 8.

class CounterViewController: UIViewController {

 let vm = CounterViewModel()
 var cancellable: AnyCancellable?

 lazy var counterLabel: UILabel = {

 let label = UILabel()
 label.translatesAutoresizingMaskIntoConstraints = false
 label.textAlignment = .center
 return label

 }()

 override func viewDidLoad() {
 super.viewDidLoad()

 self.view.backgroundColor = .white
 let hostingController = UIHostingController(rootView: CounterView(vm:
vm))

 guard let counterView = hostingController.view else { return }
 self.addChild(hostingController)

 self.view.addSubview(counterView)

 // add subscriptions
 self.cancellable = vm.$value.sink { [weak self] value in
 self?.counterLabel.text = "\(value)"
 }

 // stack view
 let stackView = UIStackView(arrangedSubviews: [counterLabel,
counterView])
 stackView.axis = .vertical

 self.view.addSubview(stackView)

 // adding constraints

 }
}

Listing 8: CounterViewController using CounterView

The CounterViewController creates an instance of CounterViewModel and then
passes it to the CounterView, which is loaded using the UIHostingController.

Later, CounterViewController subscribe to the changes of the view model using
the sink function on the publisher. This means whenever the value property is
changed, the sink is going to get triggered, sending the new value in the closure
to the counter view controller . Finally, the value is displayed using a UILabel
called counterLabel.

How to communicate between UIKit view and SwiftUI view using
View Model and update both views?

In the last recipe, if you try to display the updated counter value in a SwiftUI
view, it will not work. This is shown in Listing 9.

struct CounterView: View {

 let vm: CounterViewModel

 var body: some View {
 VStack {
 // THIS WILL NOT GET UPDATED
 Text("\(vm.value)")
 Button("Increment") {
 self.vm.value += 1
 }.buttonStyle(.borderedProminent)
 }
 }
}

Listing 9: CounterView not displaying updated value of the counter

The main reason is that there is nothing telling the counter view to reload/refresh
itself when the value increments. We can fix this problem by making sure that
the CounterViewModel conforms to the ObservableObject protocol. This will
allow us to use @StateObject or @ObservedObject property wrappers that can
maintain the value between refreshes. In this particular scenario both
@StateObject and @ObservedObject will work, since we only have single view
“CounterView” and the counter view does not have any child views depending
on the values from the view model. To learn more about the differences between
@StateObject and @ObservedObject check out this free YouTube video.

The implementation is shown in Listing 10.

class CounterViewModel: ObservableObject {
 @Published var value: Int = 0
}

struct CounterView: View {

 @StateObject var vm: CounterViewModel

 var body: some View {
 VStack {
 Text("\(vm.value)")
 Button("Increment") {
 self.vm.value += 1
 }.buttonStyle(.borderedProminent)
 }
 }
}

Listing 10: Displaying updated counter value using @StateObject and ObservableObject

How to communicate between UIKit view and SwiftUI view using
global environment object?

Sometimes, you have a scenario where you want to share state with multiple
SwiftUI views. This can be achieved by using the @EnvironmentObject
property wrapper, which represents the global state of the application. In this
recipe, we are going to add another SwiftUI called “FancyCounterView”.

https://youtu.be/MlsBRoedxTA

FancyCounterView will also display the updated counter value, along with
CounterView and the CounterViewController.

We will begin by creating a global state object. This is shown in Listing 11.

class AppState: ObservableObject {
 @Published var counter: Int = 0
}

Listing 11: Global state object called AppState

We will update our implementation for CounterView and also create a brand
new view called FancyCounterView. Both views make use of the global state.
This is shown in Listing 12.

struct FancyCounterView: View {

 @EnvironmentObject var appState: AppState

 var body: some View {
 VStack {
 Text("Fancy Counter View")
 Text("\(appState.counter)")
 }
 }
}

struct CounterView: View {

 @EnvironmentObject var appState: AppState

 var body: some View {
 VStack {
 Text("\(appState.counter)")
 Button("Increment") {
 self.appState.counter += 1
 }.buttonStyle(.borderedProminent)

 FancyCounterView()
 .padding()
 .foregroundColor(.white)
 .background {
 Color.green
 }
 }
 }
}

Listing 12: CounterView and FancyCounterView using global state

Now, finally we will update the CounterViewController to inject the AppState as
an environment object to the root view. This is shown in Listing 13.

 let appState = AppState()
 let hostingController = UIHostingController(rootView:
CounterView().environmentObject(appState))

Listing 13: Injecting global state from CounterViewController

If you run the app and click on the increment button, you will notice that the
counter value is updating in CounterView, FancyCounterView and the
CounterViewController. EnvironmentObject is a great option to share state with
multiple SwiftUI views.

How to load a UIKit view in a SwiftUI application?

Sometimes you have a scenario, where you have to load a UIKit view into a
SwiftUI application. In order to load a UIKit view into a SwiftUI view, you will
have to implement UIViewRepresentable protocol. UIViewRepresentable
protocol allows you to wrap your UIKit view to integrate into a SwiftUI
application.

Take a look at Listing 14, where we have represented a UIActivityIndicatorView
in UIKit so it can be used in a SwiftUI view.

import SwiftUI

struct LoadingView: UIViewRepresentable {

 var loading: Bool

 func makeUIView(context: Context) -> UIActivityIndicatorView {
 let activityIndicatorView = UIActivityIndicatorView(style: .medium)
 return activityIndicatorView
 }

 func updateUIView(_ uiView: UIActivityIndicatorView, context: Context) {
 if loading {
 uiView.startAnimating()
 } else {

 uiView.stopAnimating()
 }
 }

 typealias UIViewType = UIActivityIndicatorView

}

Listing 14: Wrapping a UIKit view through the use of UIViewRepresentable

The UIViewRepresentable protocol consists of few mandatory functions, which
includes makeUIView and updateUIView. The purpose of makeUIView is to
construct and return a UIKit view. The updateUIView is called whenever source
of truth is changed.

Now, we can use our LoadingView as shown in Listing 15.

struct ContentView: View {

 @State private var isLoading: Bool = false

 var body: some View {
 VStack {
 LoadingView(loading: isLoading)
 Button(“Toggle") {
 isLoading.toggle()
 }
 }
 }
}

Listing 15: Wrapping a UIKit view through the use of UIViewRepresentable

Now, when you tap the “Toggle” button you can view and hide the activity
indicator view.

NOTE: We used the UIActivityIndicatorView just for demonstration purposes. If
you are trying to implement a loading view then SwiftUI already consists of
ProgressView.

How to implement delegate methods of a UIKit view in a SwiftUI
application?

Sometimes when you are loading a UIKit view in a SwiftUI application, you also
need to implement the delegate methods exposed by UIKit view. This can be for
variety of reasons, maybe you need to handle a specific UI event, which is
exposed through those delegate methods.

In Listing 16 we have created a simple MapView using the UIViewRepresentable
protocol. This allows us to use MKMapView in a SwiftUI application.

import Foundation
import MapKit
import SwiftUI

struct MapView: UIViewRepresentable {

 typealias UIViewType = MKMapView

 func makeUIView(context: Context) -> MKMapView {
 let map = MKMapView()
 return map
 }

 func updateUIView(_ uiView: MKMapView, context: Context) {

 }

}

struct MapViewScreen: View {
 var body: some View {
 VStack {
 MapView()
 }
 }
}

Listing 16: MapView using the UIViewRepresentable protocol

The result is shown in Figure 3.

Figure 3: MapView using the UIViewRepresentable protocol

Pretty simple right!

We can even add an annotation on the map using MKPointAnnotation in the
MapView struct. This is shown in Listing 17.

struct MapView: UIViewRepresentable {

 typealias UIViewType = MKMapView

 func makeUIView(context: Context) -> MKMapView {
 let map = MKMapView()

 // add annotation
 let pointAnnotation = MKPointAnnotation()
 pointAnnotation.title = "Apple Campus"

 pointAnnotation.coordinate = CLLocationCoordinate2D(latitude:
37.331821, longitude: -122.031181)

 map.addAnnotation(pointAnnotation)

 return map
 }

 func updateUIView(_ uiView: MKMapView, context: Context) {

 }

}

Listing 17: Adding annotation to the map

The result is shown in Figure 4.

Figure 4: Displaying annotation on the map

Great!

But what if you want to change the annotation view. Maybe you are interested in
displaying an Apple logo instead of the default annotation marker. Luckily,
MKMapView provides delegate methods that allows you to change the

In order to use the delegate methods, we need to create a coordinator. The
coordinator is implemented in Listing 18.

class MapViewCoordinator: NSObject, MKMapViewDelegate {
 var mapView: MKMapView?
}

Listing 18: Implementation of MapViewCoordinator

The MapViewCoordinator class is pretty basic at the moment. At present it
inherits from NSObject and conforms to MKMapViewDelegate protocol. It also
consists of the mapView property, which will be assigned later.

Next, we need to update our MapView to return the newly created
MapViewCoordinator and also set the MKMapView delegate to our coordinator.
This is implemented in Listing 19.

struct MapView: UIViewRepresentable {

 typealias UIViewType = MKMapView

 func makeUIView(context: Context) -> MKMapView {
 let map = MKMapView()
 map.delegate = context.coordinator
 context.coordinator.mapView = map

 // add annotation
 let pointAnnotation = MKPointAnnotation()
 pointAnnotation.title = "Apple Campus"
 pointAnnotation.coordinate = CLLocationCoordinate2D(latitude:
37.331821, longitude: -122.031181)

 map.addAnnotation(pointAnnotation)

 return map
 }

 func updateUIView(_ uiView: MKMapView, context: Context) {

 }

 func makeCoordinator() -> MapViewCoordinator {
 MapViewCoordinator()
 }

}

Listing 19: Returning coordinator from the MapView

If you run the app, nothing will change it will still shows you the default marker
as an annotation. But now you have an option to return a different view for your
annotation through the use of MKMapViewDelegate protocol. Update your
MapViewCoordinator and implement the viewForAnnotation delegate function
as shown in Listing 20.

class MapViewCoordinator: NSObject, MKMapViewDelegate {

 var mapView: MKMapView?

 override init() {
 super.init()
 registerMapAnnotationViews()
 }

 private func registerMapAnnotationViews() {

 guard let mapView = mapView else {
 return
 }

 mapView.register(AppleMarkerAnnotationView.self,
forAnnotationViewWithReuseIdentifier:
NSStringFromClass(AppleMarkerAnnotationView.self))
 }

 func mapView(_ mapView: MKMapView, viewFor annotation: MKAnnotation) ->
MKAnnotationView? {

 switch annotation {
 case is MKPointAnnotation:
 return AppleMarkerAnnotationView(annotation: annotation,
reuseIdentifier: NSStringFromClass(AppleMarkerAnnotationView.self))
 default:
 print("NIL")
 return nil
 }
 }
}

Listing 20: Custom annotation view

The viewForAnnotation delegate function returns a custom view called
“AppleMarkerAnnotationView”, which displays Apple logo instead of the
default marker. Figure 5 shows the result.

Figure 5: Custom annotation view

The MKMapViewDelegate also provides many other delegate functions, which
can be used using the techniques discussed earlier.

How to load a SwiftUI view as a cell for UIKit UITableView?

In iOS 16 and Xcode 14, Apple introduced new hosting configurations, which
allows you to load a SwiftUI view as a cell for your UITableView or
UICollectionView. This is great news because now we can use the declarative API
of SwiftUI to construct our UITableView layout.

The first step is to implement your cell using SwiftUI. This is implemented in
Listing 21.

struct DonutCellView: View {

 let donut: Donut

 var body: some View {
 HStack {
 Image(donut.picture)
 .resizable()
 .frame(width: 75, height: 75)
 .clipShape(RoundedRectangle(cornerRadius: 10))

 Text(donut.name)
 Spacer()
 Image(systemName: "chevron.right")

 }.padding()
 }
}

Listing 21: Implementation of DonutCellView

Our cell is called DonutCellView and it displays the name and image associated
with the donut. Figure 6 shows the rendering of the DonutCellView.

Figure 6: DonutCellView implemented in SwiftUI

Next, we will use the new contentConfiguration available on the UITableViewCell
to load the DonutCellView in our UIKit app. The implementation is shown in
Listing 22.

class DonutTableViewController: UITableViewController {

 let donuts = [Donut(name: "Donut 1", picture: "1"), Donut(name: "Donut 2",
picture: "2"),Donut(name: "Donut 3", picture: "3"),Donut(name: "Donut 4",
picture: "4")]

 override func viewDidLoad() {
 super.viewDidLoad()

 navigationController?.navigationBar.prefersLargeTitles = true
 self.title = "Donuts"

 // register the cell
 tableView.register(UITableViewCell.self, forCellReuseIdentifier:
"DonutCell")
 }

 override func tableView(_ tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {
 return donuts.count
 }

 override func tableView(_ tableView: UITableView, cellForRowAt indexPath:
IndexPath) -> UITableViewCell {

 let donut = donuts[indexPath.row]
 let cell = tableView.dequeueReusableCell(withIdentifier: "DonutCell",
for: indexPath)

 cell.contentConfiguration = UIHostingConfiguration(content: {
 DonutCellView(donut: donut) // SwiftUI View
 })

 return cell
 }

}

Listing 22: DonutTableViewController using UIHostingConfiguration

The cellForRowAtIndex path delegate function of UITableViewDelegate is
responsible for returning a new UITableViewCell. After dequeuing the cell we
configure the cell using contentConfiguration. The contentConfiguration is of
type UIHostingConfiguration and it allows to host SwiftUI view hierarchy inside
the UITableViewCell and UICollectionViewCell.

Figure 7 shows the result.

Figure 7: SwiftUI view hosted as the content for the UITableViewCell

How to show Xcode preview of UIViewController?

One of the best things about working in SwiftUI is the ability to visually see your
user interface through the use of Xcode previews. I know Xcode previews does
have some quirks but at least for me it works majority of the time. Wouldn’t it be
really cool, if we can also visualize our View Controller in UIKit using Xcode
previews? Let’s see how we can achieve it.

You can represent your ViewController in SwiftUI by conforming to
UIViewControllerRepresentable. This way you can load your ViewController
in a SwiftUI application. Check out the implementation of
DonutTableViewController_Representable in Listing 23, which conforms to the
UIViewControllerRepresentable protocol.

struct DonutTableViewController_Representable: UIViewControllerRepresentable {

 func makeUIViewController(context: Context) -> DonutTableViewController {
 DonutTableViewController()
 }

 func updateUIViewController(_ uiViewController: DonutTableViewController,
context: Context) {

 }
}

Listing 23: Conforming to UIViewControllerRepresentable

Finally, create a struct which conforms to PreviewProvider protocol. This is
shown in Listing 24.

struct DonutDetailsViewController_Previews: PreviewProvider {
 static var previews: some View {
 DonutTableViewController_Representable()
 }
}

Listing 24: Implementing the Previews

Now, you will be able to visualize your DonutTableViewController using Xcode
previews as shown in Figure 8.

Figure 8: Xcode previews for view controller

Conclusion

I hope you have enjoyed this small recipe book on UIKit with SwiftUI. If you are
interested in my other books then check out the section below.

Books:

1. Surviving the Coding Bootcamp - From no coding experience to earning a six-
figure salary

2. Navigation API in SwiftUI for iOS 16

3. Check out my Udemy video courses

https://azamsharp.gumroad.com/l/surviving-the-coding-bootcamp
https://azamsharp.gumroad.com/l/surviving-the-coding-bootcamp
https://azamsharp.gumroad.com/l/navigation-api-swiftui
https://www.udemy.com/user/mohammad-azam-2/

