
1

2

About the Author

Mohammad Azam is a veteran developer who has been professionally writing software
for more than a decade. Azam has worked as a lead mobile developer for many fortune
500 companies including Valic, AIG, Dell, Baker Hughes and Blinds.com. Azam is also
a top Udemy and LinkedIn instructor with more than 40K students. At present Azam is a
lead instructor at DigitalCrafts, where he teaches software development.

Azam is also an international speaker and has been professionally speaking since
2006. In his spare time Azam likes to exercise and plan his next adventure to the
unknown corners of the world.

Twitter​: ​https://twitter.com/azamsharp

Udemy​: ​https://www.udemy.com/user/mohammad-azam-2/

https://twitter.com/azamsharp
https://www.udemy.com/user/mohammad-azam-2/

3

MVVM Design Pattern

The term MVVM is used fluently in the Microsoft community. MVVM stands for Model
View ViewModel and it is one of the many design patterns for creating software. The
real name of MVVM is ​Presentation Model​, which is inspired from Application Model in
Smalltalk.

Design Patterns are platform independent. This means you can use design patterns
with any language.

The three different components of MVVM are Model, View and ViewModel. Let’s take a
closer look at the different components of MVVM.

Model

The model represents the application domain. Models are classes in your code, which
identify business objects. Consider implementing an application for a banking system.
The domain objects in the banking system might consists of the following models:

Account
Customer
Transaction
Bank
AccountType
TransactionType

Each model represents a certain aspect of the business domain. A ​Customer​ object
represents a customer. This may include the customer’s name, address, ssn etc. The
Account​ object represents the customer’s account, which may include attributes like
account number, balance, type, status, interest rate etc.

Model may also contain business rules, which are based on the domain of the
application. For a banking applications these rules may include the following:

https://www.martinfowler.com/eaaDev/PresentationModel.html

4

- Adding a penalty if the balance is less than a specific amount
- Activating the interest rates based on date time
- Processing transaction fees for wire transfers

View

The view represents the user interface in the MVVM design pattern. This includes
webpages, screens of mobile devices, smart watches and even console/terminal
screens. Anything that can be visually represented is a view. A view is the primary way
a user can interact with your app i.e (pressing a button, scrolling, drag and drop etc).

A view is something you can see with your eyes

In iOS development, a view is created in a few different ways. This includes
storyboards, programmatically or declaratively using SwiftUI framework.

ViewModel

The primary role of a view model is to provide data to the view. A view model consists of
properties which bind to the controls on the screen. Binding, simply means that data
from a particular property of the view model will be displayed on a particular user
interface element.

Binding can be bi-directional, meaning that the data from the view model is displayed on
the view and if view changes the data then it is automatically updated in the view model.
The whole idea behind binding is to keep the user interface (view) in-sync with the view
model.

At this point, you might be thinking that why use a view model, why not simply bind the
model to the view. Although you can do that, it is not advisable. Model contains the
business rules, validations and domain logic. Model may even contain tons of other
properties, which may make no sense to the view.

5

Consider a simple example of change password screen. The ​view ​is shown in ​Figure 1​.

Figure 1: Change password screen

If you use a model to represent the change password screen, then you may end up with
the implementation shown in ​Listing 1​.

1. struct​ User ​{
2. ​let​ username​:​ ​String
3. ​let​ password​:​ ​String
4. ​let​ confirmPassword​:​ ​String
5. }

Listing 1: User model representing the password change screen

From a strictly technical point of view, the ​User​ model will fulfil your needs and your
application will still work as expected. The problem will arise when the view changes
and you need to accommodate new features. A change in the view will cause a change
in your business model. Let’s say we want to add an option to enable Captcha for our
password change screen. Our view will update as shown in ​Figure 2​.

6

Figure 2: Captcha added to the change password screen

Now, we need to update our model to accommodate the captcha. This change is
reflected in ​Listing 2​.

1. struct​ User ​{
2. ​let​ username​:​ ​String
3. ​let​ password​:​ ​String
4. ​let​ confirmPassword​:​ ​String
5. ​let​ isRobot​:​ ​Bool
6. }

 ​Listing 2: isRobot property added to the User model

7

As you can see, the user interface behavior is slowly creeping into our business models.
Soon it will have properties to represent the show/hide status of a particular view. The
whole point of the model is to deal with business rules, not the view.

This is the main reason why view models exists. View models represent the data and
the structure behind the view. Each view element can be binded to a property of the
view model. This means if the view updates the property, it is automatically updated in
the view model and vice versa. ​Listing 3​ shows the implementation of
ChangePasswordViewModel​, which is the view model behind the change password
screen.

1. struct​ ChangePasswordViewModel ​{
2. ​let​ password​:​ ​String
3. ​let​ confirmPassword​:​ ​String
4. ​let​ isRobot​:​ ​Bool
5. }

Listing 3: Implementation of ChangePasswordViewModel

Now that you have the basic information about the MVVM Design Pattern, let's take a
look at different ways view models can be structured in an application.

8

Structuring View Models

In the last chapter, you learned about the MVVM Design Pattern. We looked at different
pieces of MVVM design patterns, which includes Model, View and ViewModel. In this
section you are doing to learn multiple techniques for structuring your view models.

View Models and Lists

When building mobile applications, quite often you need to display a list of items. This
means you will have an array of objects, which you want to present on the view. There
are a number of ways to structure your view models to accommodate the need to
display a list.

You can always send an array of view models back to the view, but we found that
creating a parent view model which contains a list of view models is a more flexible
solution.

Consider a scenario, where you are building an app which is responsible for displaying
list of dishes. The dishes view is shown in ​Figure 3​.

Figure 3: Dishes screen

9

One possible implementation of view model is shown in ​Listing 4​.

1. import​ UIKit
2.
3. struct​ DishListViewModel ​{
4. ​var​ dishes = ​[​DishViewModel​]()
5. }
6.
7. struct​ DishViewModel ​{
8.
9. ​let​ name​:​ ​String
10. ​let​ course​:​ ​String
11. ​let​ price​:​ ​Double
12.
13. }

Listing 4: DishListViewModel and DishViewModel

The ​DishListViewModel​ represents the entire view, which is responsible for displaying
dishes on the screen. ​DishListViewModel​ contains a nested list, represented by
DishViewModel​ objects. The benefit of this approach is that it gives you the flexibility to
add additional attributes/properties to the view model. For example, maybe you want to
add search functionality to your dishes screen. You can update the view to add a search
bar and update the view model to capture the search term as shown in ​Listing 5​.

1. struct​ DishListViewModel ​{
2. ​var​ searchTerm​:​ ​String​ = ​""
3. ​var​ dishes = ​[​DishViewModel​]()
4. }
5.
6. struct​ DishViewModel ​{
7.
8. ​let​ name​:​ ​String
9. ​let​ course​:​ ​String
10. ​let​ price​:​ ​Double
11.
12. }

Listing 5: DishListViewModel with searchTerm field

10

By adding a parent view model, you add the flexibility to accommodate future changes
to the view much more easily.

Multi-Child View Models

As explained in the previous section, a parent view model can also accommodate
multiple child view models. It all depends on the user interface of the application. Take a
look at the ​Figure 4​ which shows a Stocks app interface.

Figure 4: Stocks app interface

11

The stocks app displays two different types of information. It displays a list of stocks and
top news. A single parent view model can represent the whole screen. The parent view
model can be divided into multiple nested view models representing stocks and top
news articles. One possible implementation of parent view model is shown in ​Listing 6​.

1. struct​ HomeViewModel ​{
2. ​var​ stocks = ​[​StockViewModel​]()
3. ​var​ articles = ​[​ArticleViewModel​]()
4. }
5.
6. struct​ StockViewModel ​{
7. ​let​ symbol​:​ ​String
8. ​let​ price​:​ ​Double
9. ​let​ company​:​ ​String
10. ​let​ change​:​ ​Double
11. }
12.
13. struct​ ArticleViewModel ​{
14. ​let​ title​:​ ​String
15. ​let​ publication​:​ ​String
16. ​let​ imageURL​:​ ​String
17. }

Listing 6: Muti-Child View Model

The ​HomeViewModel​ represent the main model which controls the entire view. It is
composed of two child view models, stocks and articles respectively. The
HomeViewModel​ will be responsible for populating the child view models. This can be
done by calling a webservice and fetching data from an API or populating it from the
database.

A better organized and structured view model can help to populate the view more
efficiently. In the next section, we are going to take a look at how view models can be
used to validate user’s input and provide feedback.

12

MVVM and Validation

There is a famous saying in software development “​Garbage in, garbage out”​. It
means that if you don’t validate user’s input, then you may end up with invalid or
garbage data. In this chapter you will learn multiple ways of performing validation in
SwiftUI applications. To keep things simple, we will be working on a registration screen
which will allow users to create a new account. Let’s start with basic validation.

Basic Validation

The first step is to build the user interface for the app. There are countless ways to
implement a registration view. We have used the Form view in SwiftUI to implement the
registration view. The implementation of the view is shown in ​Listing 6.1​.

1. import​ SwiftUI
2.
3. struct​ ContentView​:​ View ​{
4.
5. @State ​private​ ​var​ firstname​:​ ​String​ = ​""
6. @State ​private​ ​var​ lastname​:​ ​String​ = ​""
7. @State ​private​ ​var​ username​:​ ​String​ = ​""
8. @State ​private​ ​var​ password​:​ ​String​ = ​""
9.
10.
11. ​var​ body​:​ some View ​{
12. NavigationView ​{
13.
14. Form ​{
15. VStack​(​spacing​:​ ​10​)​ ​{
16. TextField​(​"First name"​,​ text​:​ $firstname​)
17.

.​textFieldStyle​(​RoundedBorderTextFieldStyle​())
18. TextField​(​"Last name"​,​ text​:​ $lastname​)
19.

.​textFieldStyle​(​RoundedBorderTextFieldStyle​())
20. TextField​(​"Username"​,​ text​:​ $username​)
21.

.​textFieldStyle​(​RoundedBorderTextFieldStyle​())
22. SecureField​(​"Password"​,​ text​:​ $password​)
23.

.​textFieldStyle​(​RoundedBorderTextFieldStyle​())

13

24.
25. Button​(​"Register"​)​ ​{
26.
27.
28. ​}​.​padding​(​10​)
29. .​background​(​Color.​blue​)
30. .​cornerRadius​(​6​)
31. .​foregroundColor​(​Color.​white​)
32.
33.
34.
35. ​}
36.
37. ​}
38.
39. .​navigationBarTitle​(​"Registration"​)
40.
41. ​}
42.
43.
44. ​}
45. }

Listing 6.1: User interface using the Form view in SwiftUI

The output is shown in ​Figure 4.1​.

14

Figure 4.1: Registration view using SwiftUI Forms

At present our Register button does not perform any validation. We can write a very
basic validation by checking the value of the properties as shown in ​Listing 6.2​.

15

1. @State ​private​ ​var​ message​:​ ​String​ = ​""
2.
3. Button​(​"Register"​)​ ​{
4.
5. ​if​ ​self​.​firstname​.​isEmpty​ ​{
6. ​self​.​message​.​append​(​"Firstname

cannot be empty! \n"​)
7. ​}
8.
9. ​if​ ​self​.​lastname​.​isEmpty​ ​{
10. ​self​.​message​.​append​(​"Lastname

cannot be empty!"​)
11. ​}
12.
13. ​// do the same for username and

password
14.
15.
16. ​}

Listing 6.2: Simple validation function

The result is shown in ​Figure 4.2​.

16

Figure 4.2: Simple validation

As you can see, it works but it is not a good solution. First of all, we are managing
multiple independent state variables, which can be replaced by a single view model.
The second reason is that our registration view is responsible for validating the user
interface. As the complexity of the user interface grows, so does the validation code. In
the next section we will look into building a custom validation engine, which will be
responsible for performing validation for our view model.

Implementing Validation Engine

The first step is to get rid of individual properties and replace them with a single view
model. We have implemented a view model called ​RegistrationViewModel​ which
represents the entire screen. The implementation is shown in ​Listing 6.3​.

17

1. import​ Foundation
2.
3. class​ RegistrationViewModel: ValidationBase​ {
4. ​var​ firstname​:​ ​String​ = ​""
5. ​var​ lastname​:​ ​String​ = ​""
6. ​var​ username​:​ ​String​ = ​""
7. ​var​ password​:​ ​String​ = ​""
8. }

Listing 6.3: RegistrationViewModel

RegistrationViewModel​ inherits from ​ValidationBase​ which will be discussed in a
moment. Let’s first replace our individual properties in the registration view
(ContentView) with the newly created view model. This is shown in ​Listing 6.4​.

1. struct​ ContentView​:​ View ​{
2.
3. @ObservableObject ​private​ ​var​ registrationVM =

RegistrationViewModel​()
4.
5. ​var​ body​:​ some View ​{
6. NavigationView ​{
7.
8. Form ​{
9. VStack​(​spacing​:​ ​10​)​ ​{
10. TextField​(​"First name"​,​ text​:

$registrationVM.​firstname​)
11.

.​textFieldStyle​(​RoundedBorderTextFieldStyle​())
12. TextField​(​"Last name"​,​ text​:

$registrationVM.​lastname​)
13.

.​textFieldStyle​(​RoundedBorderTextFieldStyle​())
14. TextField​(​"Username"​,​ text​:

$registrationVM.​username​)
15.

.​textFieldStyle​(​RoundedBorderTextFieldStyle​())
16. SecureField​(​"Password"​,​ text​:

$registrationVM.​password​)
17.

.​textFieldStyle​(​RoundedBorderTextFieldStyle​())
18.

18

19. Button​(​"Register"​)​ ​{
20.
21.
22.
23. ​}​.​padding​(​10​)
24. .​background​(​Color.​blue​)
25. .​cornerRadius​(​6​)
26. .​foregroundColor​(​Color.​white​)
27.
28.
29. ​}
30. ​}
31. .​navigationBarTitle​(​"Registration"​)
32.
33. ​}
34. ​}
35. }

Listing 6.4: Replacing individual properties with view model

One thing to note is that we have decorated the view model instance with
@ObservableObject​. This means that ​RegistrationViewModel​ can publish events
which can be observed by the view or anyone who wants to subscribe to it. To make our
code modular and maintainable, we have created a ​ValidationBase​ class which
provides base implementation of broken rules. The implementation of ValidationBase
class is shown in ​Listing 6.5​.

1. class​ ValidationBase​:​ ObservableObject ​{
2. @Published fileprivate ​(​set​)​ ​var​ brokenRules​:​ ​[​BrokenRule​]​ =

[​BrokenRule​]()
3. }

Listing 6.5: ValidationBase

ValidationBase class maintains an array of broken rules. A ​BrokenRule​ is simply a
structure which represents a failed validation failure. The implementation is shown in
Listing 6.6​.

1. struct​ BrokenRule ​{
2. ​let​ id = UUID​()

19

3. ​let​ name​:​ ​String
4. ​let​ message​:​ ​String
5. }

Listing 6.6: Implementation of BrokenRule

The name represents the property, which failed the validation and the message
represents a custom message to be displayed to the user.

We have also implemented a ​Validator​ protocol, which will be used by view models
interested in providing validation behavior. The ​Validator​ protocol is shown in ​Listing
6.7​.

1. protocol​ Validator​:​ ValidationBase ​{
2. ​func​ validate​()
3. }
4.
5. extension​ Validator ​{
6.
7. ​func​ addBrokenRule​(​_ rule​:​ BrokenRule​)​ ​{
8. brokenRules.​append​(​rule​)
9. ​}
10.
11. ​func​ clearBrokenRules​()​ ​{
12. brokenRules = ​[]
13. ​}
14.
15. }

Listing 6.7: Validator protocol with default implementations

Now, we can update ​RegistrationViewModel​ to implement the validate function as
shown in ​Listing 6.8​.

1. class​ RegistrationViewModel​:​ ValidationBase ​{
2. ​var​ firstname​:​ ​String​ = ​""
3. ​var​ lastname​:​ ​String​ = ​""
4. ​var​ username​:​ ​String​ = ​""
5. ​var​ password​:​ ​String​ = ​""
6. }
7.

20

8. extension​ RegistrationViewModel​:​ Validator ​{
9.
10. ​func​ validate​()​ ​{
11.
12. clearBrokenRules​()
13.
14. ​if​ firstname.​isEmpty​ ​{
15. addBrokenRule​(​BrokenRule​(​name​:​ ​"firstname"​,

message​:​ ​"Firstname should not be empty"​))
16. ​}
17.
18. ​if​(​lastname.​isEmpty​)​ ​{
19. addBrokenRule​(​BrokenRule​(​name​:​ ​"lastname"​,

message​:​ ​"Lastname should not be empty"​))
20. ​}
21. ​}
22. }

Listing 6.8: Implementation of validate function

The validate function first clears out any existing broken rules and then performs
validation on the individual properties of the view model. If the validation fails, a broken
rule is added to a list of broken rules.

Since ​registrationVM​ is decorated with ​ObservableObject​ protocol and
brokenRules with ​@Published ​property wrapper, any changes to the brokenRules will
cause the publisher to publish new events. This is our opportunity to get the updated
rules and display the broken rules on the user interface. In the next section we will
implement ​BrokenRulesView​, which will be responsible for displaying the validation
errors on the screen.

Displaying Broken Rules

In the last section, we implemented the ​validate​ function, responsible for performing
validation on the properties of the view model. In this section we will display the broken
rules on the view.

Instead of polluting the registration view (ContentView), we will create a brand new view
called ​BrokenRulesView​. ​BrokenRulesView​ will take a list of broken rules as an

21

argument and then display them on the view. The implementation of ​BrokenRulesView
is shown in ​Listing 6.9​.

1. import​ SwiftUI
2.
3. struct​ BrokenRulesView​:​ View ​{
4.
5. ​let​ brokenRules​:​ ​[​BrokenRule​]
6.
7. ​var​ body​:​ some View ​{
8. List​(​brokenRules​,​ id​:​ \.​id​)​ ​{​ rule ​in
9. Text​(​rule.​message​)
10. ​}
11. ​}
12. }
13.
14. struct​ BrokenRulesView_Previews​:​ PreviewProvider ​{
15. ​static​ ​var​ previews​:​ some View ​{
16. BrokenRulesView​(​brokenRules​:​ ​[])
17. ​}
18. }

Listing 6.9: Implementation of BrokenRulesView

The List view is used to iterate over the array of broken rules and then display them
using a Text view. ​Listing 6.10​ shows how to use the BrokenRulesView in registration
view (ContentView) to display the validation errors.

1. Form ​{
2. ...
3.
4. ​BrokenRulesView​(​brokenRules​:

registrationVM.​brokenRules​)
5.
6. ​}
7. ​}

Listing 6.10: Using BrokenRulesView

22

Run the application and click the register button without filling out the TextFields. The
validate function gets triggered and passes down the broken rules to BrokenRulesView
where finally it gets displayed as shown in ​Figure 4.3​.

Figure 4.3: Broken rules displayed on the screen

This approach also gives you the flexibility to customize the display of validation errors
by changing the user interface through the modification of ​BrokenRulesView​. Although
this approach works, we can definitely make it better. ​Swift 5.1​ introduced property
wrappers which allows custom code to be triggered when evaluating properties.

In the next chapter you will learn how to use the ​ValidatedPropertyKit ​framework to
perform validation in SwiftUI. ValidatedPropertyKit framework performs validation by
decorating the properties with property wrappers.

23

Performing Validation Using Validated
Framework

ValidatedPropertyKit​ is a Swift framework for performing validation in your application.
It uses property wrappers feature introduced in Swift 5.1 to decorate properties with
required validation attributes. You have already used several property wrappers
including @State, @Binding, @ObservableObject.

In this section we are going to integrate ValidatedPropertyKit to our existing SwiftUI
application and display the broken rules on the interface.

Integrating ValidatedPropertyKit

The first step is to integrate ValidatedPropertyKit framework in your SwiftUI application.
Keep in mind that ValidatedPropertyKit is an independent library and has no
dependency on SwiftUI framework.

The easiest way to integrate ValidatedPropertyKit is by using Swift Package Manager.
In Xcode open the ​File​ menu and then select ​Swift Packages ​and then ​Add Package
Dependency​. This will open a dialog where you can enter the Github url for the
dependency. This is shown in ​Figure 4.4​.

Figure 4.4: Adding dependency through Swift Package Manager in Xcode

https://github.com/SvenTiigi/ValidatedPropertyKit

24

Click on the Next button and complete the whole process. Once the dialog closes your
dependency to ValidatedPropertyKit will be successfully added to the project. Next we
will decorate our view models with property wrappers which will enable validation.

Adding Validation to RegistrationViewModel

As mentioned before, ValidatedPropertyKit revolves around property wrappers. In order
to perform validation we will have to decorate our properties in the view model. This is
shown in ​Listing 6.11​.

1. import​ Foundation
2. import​ ValidatedPropertyKit
3.
4. class​ RegistrationViewModel​:​ ObservableObject ​{
5.
6. @Validated​(​.​nonEmpty​)
7. ​var​ firstname​:​ ​String​? = ​""
8.
9. @Validated​(​.​nonEmpty​)
10. ​var​ lastname​:​ ​String​? = ​""
11.
12. @Validated​(​.​nonEmpty​)
13. ​var​ username​:​ ​String​? = ​""
14.
15. @Validated​(​.​nonEmpty​)
16. ​var​ password​:​ ​String​? = ​""
17.
18. }

Listing 6.11: RegistrationViewModel decorated with property wrappers

Please note that we have declared properties as optionals and initialized them as empty
strings as ValidatedPropertyKit will only validate not nil values.

The implementation starts with importing ValidatedPropertyKit and then decorating
property wrappers on the properties, which will be taking part in the validation. There
are many different property wrappers available in ValidatedPropertyKit framework. Few
of them are shown in the list below:

.nonEmpty​ - Value cannot be null or empty

25

.isEmail​ - Value must be in email format

.range(8…)​ - Value must satisfy the range

.greaterOrEqual(1) ​- Value must satisfy the condition

You can also create your own custom validation wrappers for situations that are not
covered in the default ValidatedPropertyKit.

The next step is to implement the validate function which will be responsible for
evaluating the properties. The implementation is shown in ​Listing 6.12​.

1. @Published ​private​ ​(​set​)​ ​var​ brokenRules​:​ ​[​BrokenRule​]​ =
[​BrokenRule​]()

2.
3. ​func​ validate​()​ ​{
4.
5. brokenRules.removeAll()
6.
7. ​let​ rules = ​[
8. ​"Firstname"​:​ _firstname.​validationError​,
9. ​"Lastname"​:​ _lastname.​validationError​,
10. ​"Username"​:​ _username.​validationError​,
11. ​"Password"​:​ _password.​validationError
12. ​]
13.
14. _ = rules.​compactMap​ ​{​ pair ​->​ ​Void​ ​in
15.
16. guard ​let​ errorMessage = pair.​1​?.​failureReason

else​ ​{​ ​return​ ​}
17. brokenRules.​append​(​BrokenRule​(​name​:​ pair.​0​,

message​:​ errorMessage​))
18. ​}
19. ​}

Listing 6.12: Validate function of RegistrationViewModel

Inside the validate function we create a rules array, which contains the name of the
property and the validation error associated with the property.

26

Next, we iterate through the rules and if we find any failure reason associated with the
property we add that as a broken rule to the ​brokenRules​ array. The ​brokenRules​ is
also marked with ​@Published​ ​property wrapper, which means that it will publish an
event as soon as it is updated.

The final step is to display the broken rules on the user interface. This is exactly the
same as before, we will be calling the validate function on the ​registrationVM​ and
then using the ​BrokenRulesView​ to display the errors. The implementation is shown in
Listing 6.13​.

1. struct​ ContentView​:​ View ​{
2.
3. @ObservedObject ​private​ ​var​ registrationVM =

RegistrationViewModel​()
4.
5. ​var​ body​:​ some View ​{
6. NavigationView ​{
7.
8. Form ​{
9. VStack​(​spacing​:​ ​10​)​ ​{
10. TextField​(​"First name"​,​ text​:

$registrationVM.​firstname​.​bound​)
11.

.​textFieldStyle​(​RoundedBorderTextFieldStyle​())
12. TextField​(​"Last name"​,​ text​:

$registrationVM.​lastname​.​bound​)
13.

.​textFieldStyle​(​RoundedBorderTextFieldStyle​())
14. TextField​(​"Username"​,​ text​:

$registrationVM.​username​.​bound​)
15.

.​textFieldStyle​(​RoundedBorderTextFieldStyle​())
16. SecureField​(​"Password"​,​ text​:

$registrationVM.​password​.​bound​)
17.

.​textFieldStyle​(​RoundedBorderTextFieldStyle​())
18.
19. Button​(​"Register"​)​ ​{
20.
21. ​self​.​registrationVM​.​validate​()
22.
23. ​}​.​padding​(​10​)
24. .​background​(​Color.​blue​)

27

25. .​cornerRadius​(​6​)
26. .​foregroundColor​(​Color.​white​)
27.
28.
29. BrokenRulesView​(​brokenRules​:

registrationVM.​brokenRules​)
30.
31.
32. ​}
33. ​}
34. .​navigationBarTitle​(​"Registration"​)
35.
36. ​}
37. ​}
38. }

Listing 6.13: BrokenRulesView added to the ContentView

For those of you paying attention, you will notice that we used a bound function when
binding the values to the TextField view. The reason is that TextField binds to
Binding<String>​ but not ​Binding<String?>​. The bound extension allows us to
unwrap the optional, which can then be used to bind to the views on the user interface.
The implementation of the bound function is available as downloadable source code.

The result is shown in ​Figure 4.5​.

28

Figure 4.5: ValidatedPropertyKit showing errors

As you can see in ​Figure 4.5​, validation is fired and the default error messages are
displayed on the screen. This will work for some situations but it would be great if we
can customize the error messages. In the next section, you will learn how to write a
custom validation rule, which can provide a custom error message.

Customizing Validation Errors

In order to customize or add a new validation rule you will need to extend the Validation
structure provided by ValidatedPropertyKit. Add a new file
“​Validation+Extension.swift​” to your existing project and add a new static property
called ​required​. The implementation is shown in Listing ​6.14

29

1. import​ Foundation
2. import​ ValidatedPropertyKit
3.
4. extension​ Validation ​where​ Value ​==​ ​String​ ​{
5.
6. ​static​ ​var​ ​required​:​ Validation ​{
7. ​return​ .​init​ ​{​ value ​in
8. value.​isEmpty​ ? .​failure​(​"\(value) cannot be empty"​)

:​ .​success​(())
9. ​}
10. ​}
11.
12. }

Listing 6.14: Implementation of required validation property

The required property is our custom property, which will perform validation on String
values. If the value is empty, failure closure is triggered with the error message,
otherwise success closure is triggered.

Next, update your RegistrationViewModel and use the new required validation rule. This
is shown in ​Listing 6.15​.

1. class​ RegistrationViewModel​:​ ObservableObject ​{
2.
3. @Validated​(​.​required​)
4. ​var​ firstname​:​ ​String​? = ​""
5.
6. @Validated​(​.​required​)
7. ​var​ lastname​:​ ​String​? = ​""
8.
9. @Validated​(​.​required​)
10. ​var​ username​:​ ​String​? = ​""
11.
12. @Validated​(​.​required​)
13. ​var​ password​:​ ​String​? = ​""

Listing 6.15: RegistrationViewModel using required validation rule

Run your app again and click on the register button without filling out the form. ​Figure
4.6​ shows the result.

30

Figure 4.6: Custom validation messages

We can even take one step further and provide error messages right inside the property
wrapper. For this to work we will update the custom ​required​ validator from property to
a function. The implementation is shown in ​Listing 6.16​.

1. static​ ​func​ ​required​(​errorMessage​:​ ​String​ = ​"Is Empty"​)​ ​->
Validation ​{

2. ​return​ .​init​ ​{​ value ​in
3. value.​isEmpty​ ? .​failure​(​.​init​(​message​:

errorMessage​))​ ​:​ .​success​(())
4. ​}
5. ​}

Listing 6.16: Custom required validator

31

Now, you can update your ​RegistrationViewModel​ to utilize the new required
function. This is shown in ​Listing 6.17​.

1. class​ RegistrationViewModel​:​ ObservableObject ​{
2.
3. @Validated​(​.​required​(​errorMessage​:​ ​"First name cannot be

empty"​))
4. ​var​ firstname​:​ ​String​? = ​""
5.
6. @Validated​(​.​required​(​errorMessage​:​ ​"Last name cannot be

empty"​))
7. ​var​ lastname​:​ ​String​? = ​""
8.
9. @Validated​(​.​required​(​errorMessage​:​ ​"Username cannot be

empty"​))
10. ​var​ username​:​ ​String​? = ​""
11.
12. @Validated​(​.​required​(​errorMessage​:​ ​"Password cannot be

empty"​))
13. ​var​ password​:​ ​String​? = ​""

Listing 6.17: Updated required validator to be a function

The result is shown in ​Figure 4.7​.

32

Figure 4.7: Error messages using custom validator

In this chapter you learned how to use ValidatedPropertyKit to validate your view model
properties. ValidatedPropertyKit is an amazing framework, which uses the power of
Swift 5.1 property wrappers to allow developers to add validation to their apps.

References

1) ValidatedPropertyKit GitHub
2) NSScreencast ValidatedPropertyKit Demo Project
3) Implementation of bound function on StackOverFlow

https://github.com/SvenTiigi/ValidatedPropertyKit
https://github.com/nsscreencast/427-validation-property-wrappers
https://stackoverflow.com/questions/57021722/swiftui-optional-textfield

33

MVVM and Networking

One of the most common operations in iOS development is to perform a network
request and fetch data from the server. In this chapter, we are going to take a look at
how MVVM and networking fits together and how you can use smart view models to
perform a network call.

When building applications using MVVM design pattern it is common to put a lot of
functionality into the view models. A view model should not be responsible for making a
network request. However, a view model can take help from a networking client to
perform the request. ​Figure 5​ shows the flow.

Figure 5: Roundtrip data flow between the view and the server

As shown in ​Figure 5​, an event reaches the view model triggered from the view. The
view model forwards the request to the HTTP client, which performs the actual request.
The response is returned from the server to the HTTP client where it is passed to the

34

view model. The View model processes the model objects and returns the view model
objects to the view. Finally, the view uses the view model to display the data on the
screen.

For this chapter, we have built a very simple JSON API using Node and Express. The
API is hosted on Glitch server at ​https://silicon-rhinoceros.glitch.me​ and it
returns hard-coded data.

The response from the stocks endpoint is shown in ​Listing 7​.

[{​"symbol"​:​"GOOG"​,​"description"​:​"Google Innovation
Media"​,​"price"​:​1080​,​"change"​:​"-0.24"​}​,​{​"symbol"​:​"MSFT"​,​"description"​:
"Microsoft
Cooporation"​,​"price"​:​60​,​"change"​:​"+3.45"​}​,​{​"symbol"​:​"FB"​,​"description
"​:​"Facebook Social
Media"​,​"price"​:​220​,​"change"​:​"-1.56"​}​,​{​"symbol"​:​"AMAZON"​,​"description"
:​"Amazon Everything Store "​,​"price"​:​400​,​"change"​:​"+6.56"​}]

Listing 7: JSON response from stocks endpoint

The response consists of an array of stocks. Each stock contains attributes including
symbol​, ​description​, ​price​ and ​change​. In the next section we are going to implement
HTTPClient​, which will be responsible for fetching the response from the JSON API.

Implementing HTTP Client

The main purpose of ​HTTPClient​ is to send a request to an endpoint and then process
JSON response. In ​Listing 8​ you can see the implementation of HTTPClient, which is
responsible for returning list of stocks.

1. enum​ NetworkError​:​ Error ​{
2. ​case​ invalidURL
3. ​case​ unknownError
4. ​case​ decodingError
5. }
6.
7. class​ HTTPClient ​{
8.
9. ​func​ getAllStocks​(​urlString​:​ ​String​,​ completion​:​ @escaping

(​Result​<[​Stock​],​NetworkError​>)​ ​->​ ​Void​)​ ​{

35

10.
11. guard ​let​ url = URL​(​string​:​ urlString​)​ ​else​ ​{
12. completion​(​.​failure​(​.​invalidURL​))
13. ​return
14. ​}
15.
16. URLSession.​shared​.​dataTask​(​with​:​ url​)​ ​{​ data​,

response​,​ error ​in
17.
18. guard ​let​ data = data​,​ error ​==​ ​nil​ ​else​ ​{
19. completion​(​.​failure​(​.​unknownError​))
20. ​return
21. ​}
22.
23. ​let​ stocks = try?

JSONDecoder​()​.​decode​([​Stock​]​.​self​,​ from​:​ data​)
24. stocks ​==​ ​nil​ ?

completion​(​.​failure​(​.​decodingError​))​ ​:
completion​(​.​success​(​stocks​!))

25.
26. ​}​.​resume​()
27. ​}
28.
29. }

Listing 8: Networking layer implementation in Swift

We have used the ​Result​ type feature of Swift 5 in our completion handler. This allows
us to easily create handlers for success and error callbacks. One important point to note
about ​HTTPClient​ is that it returns model objects and not view models. The model is
implemented in ​Listing 9​.

1. struct​ Stock​:​ Decodable ​{
2. ​let​ symbol​:​ ​String
3. ​let​ price​:​ ​Double
4. ​let​ description​:​ ​String
5. ​let​ change​:​ ​String
6. }

Listing 9: Stock model implementation

36

The ​Stock​ model conforms to the ​Decodable​ protocol, making it easier to get populated
by JSON response.

The property names of Stock model does not have to be the same as the JSON
response. You can always use the CodingKey protocol to dictate your own custom
mapping.

The ​StockViewModel​ is responsible for representing each stock in the view. The
implementation is shown in ​Listing 10​.

1. struct​ StockViewModel ​{
2.
3. ​let​ stock​:​ Stock
4.
5. ​init​(​stock​:​ Stock​)​ ​{
6. ​self​.​stock​ = stock
7. ​}
8.
9. ​var​ symbol​:​ ​String​ ​{
10. ​return​ ​self​.​stock​.​symbol​.​uppercased​()
11. ​}
12.
13. ​var​ description​:​ ​String​ ​{
14. ​return​ ​self​.​stock​.​description
15. ​}
16.
17. ​var​ price​:​ ​String​ ​{
18. ​return​ ​String​(​format​:​ ​"%.2f"​,​self​.​stock​.​price​)
19. ​}
20.
21. ​var​ change​:​ ​String​ ​{
22. ​return​ ​self​.​stock​.​change
23. ​}
24.
25. }

Listing 10: StockViewModel implementation

As mentioned in earlier chapters, it is a good idea to create a parent view model which
represents the entire screen. The implementation of ​StockListViewModel​ is shown in
Listing 11​.

37

1. class​ StockListViewModel ​{
2.
3. ​var​ stocks = ​[​StockViewModel​]()
4.
5. ​func​ fetchAllStocks​()​ ​{
6.
7. HTTPClient​()​.​getAllStocks​(​urlString​:

"https://silicon-rhinoceros.glitch.me/stocks"​)​ ​{​ result ​in
8. DispatchQueue.​main​.​async​ ​{
9. ​switch​ result ​{
10. ​case​ .​success​(​let​ stocks​):
11. ​self​.​stocks​ =

stocks.​map​(​StockViewModel.​init​)
12. ​case​ .​failure​(​let​ error​):
13. ​print​(​error.​localizedDescription​)
14.
15. ​}
16. ​}
17.
18. ​}
19.
20. ​}
21. }

Listing 11: Implementation of StockListViewModel

StockListViewModel​ consists of stocks property, which is an array of
StockViewModel​ instances. It also consists of ​fetchAllStocks​ function, which is
responsible for retrieving stocks using the ​HTTPClient​ object. Once the
fetchAllStocks​ function returns the model ​Stock​ objects, they are converted into
view models and sent to the view to be displayed.

The whole point of this flow is to build layers, where each layer is responsible for a
certain aspect of the application. This will help us to keep the code cleaner and
maintainable for future changes.

Before integrating MVVM design pattern into SwiftUI apps, it would be a good idea to
learn about the SwiftUI framework. In the next few chapters you will learn about SwiftUI,
Apple’s new declarative framework. You will also learn about state management in
SwiftUI, which is an integral subject when building SwiftUI applications.

38

Hello SwiftUI

At WWDC 2019 Apple announced SwiftUI framework. SwiftUI is a declarative
framework for building user interfaces for all Apple devices. This means that instead of
using Storyboards or dynamically creating your controls, you can use SwiftUI’s fluent
declarative syntax to build iOS interfaces.

If you have ever worked with React Native or Flutter then you will find a lot of similarities
in SwiftUI framework. One of the main features of SwiftUI framework is Xcode previews,
which enables the interface to update in real-time as you implement it. This feature is
similar to ​Hot Reload​ in React Native and Flutter.

Getting Started

In order to build SwiftUI apps you need to have Xcode 11 Beta installed. Although
Xcode previews feature is only available on macOS Catalina, we can still see live
preview feature using Playgrounds on macOS Mojave. ​For the most part of this book,
we will be using macOS Catalina​.

Running SwiftUI on macOS Mojave

Apart from this small section this book explicitly uses macOS Catalina. But it would be
beneficial to see how you can use macOS Mojave to run SwiftUI applications. In order
to get a preview of our UI we will be using Xcode 11 Playgrounds. Check out the
implementation in ​Listing 12​ which shows how to preview SwiftUI.

1. import​ UIKit
2. import​ PlaygroundSupport
3. import​ SwiftUI
4.
5. struct​ ContentView​:​ View ​{
6. ​var​ body​:​ some View ​{
7. Text​(​"Hello SwiftUI from macOS Mojave"​)
8. ​}
9. }
10.
11. let​ contentView = ContentView​()
12. PlaygroundPage.​current​.​liveView​ =

39

UIHostingController​(​rootView​:​ contentView​)

Listing 12: Preview in macOS Mojave

The most important part of the above code is the ​UIHostingController​.
UIHostingController makes it possible to host SwiftUI views in your applications. As
mentioned earlier that although you can use SwiftUI framework in macOS Mojave
running Xcode 11 but it is recommended that you use macOS Catalina since you will
get the support of Xcode live previews.

Running SwiftUI on macOS Catalina

The main advantage of using Xcode 11 on macOS Catalina is the power of Xcode
previews, which allows us to visualize user interface instantly. ​From this point
onwards we will be using macOS Catalina for the remainder of the book​.

Launch Xcode 11 and create a new Single View Application. Make sure to select
“​SwiftUI​” as shown in ​Figure 6​.

40

Figure 6: Creating a new SwiftUI project

Press “​Next​” and choose the location to create the project. Xcode 11 will create the project and
open up the editor showing multiple panes. ​Figure 7​ explains the purpose of each pane.

41

 ​ ​Figure 7: Xcode 11 SwiftUI panes

One thing you will immediately notice is that there are no view controllers. Although you
can use view controllers in SwiftUI application, it is recommended that you use MVVM
Design Pattern instead. In this book we will not cover MVVM Design Pattern but you
can definitely check out my ​course​ to learn more.

Let’s try to dissect the code in ​Listing 13​ and understand how it works.

1. struct​ ContentView ​:​ View ​{
2. ​var​ body​:​ some View ​{
3. Text​(​"Hello World"​)
4. ​}
5. }

Listing 13: Content View SwiftUI

The ​ContentView​ is the name for your view. It conforms to the protocol View, which
only has a single requirement to provide implementation of the body property. The body
property returns ​some​ kind of View. The keyword some indicates that it is an opaque
type being returned. This means that even though you are returning a type of View,

https://www.udemy.com/swiftui-declarative-interfaces-for-any-apple-device/?couponCode=SWIFTUIBOOK

42

compiler will know the exact type. Inside the body property we return a Text view which
is responsible for displaying text on the screen. The output is shown in ​Figure 8​.

Figure 8: ContentView rendered

Go ahead and change the “Hello World” text in Text view to something different. You
will notice that the Xcode preview automatically updates and reflect your changes.

Xcode previews are amazing and going to help speed up the development of your
interfaces drastically!

43

The next piece of code is used to create Xcode previews as shown in ​Listing 14​.

1. #if DEBUG
2. struct​ ContentView_Previews ​:​ PreviewProvider ​{
3. ​static​ ​var​ previews​:​ some View ​{
4. ContentView​()
5. ​}
6. }
7. #endif

Listing 14 - The code to generate the Xcode previews

The ​ContentView_Previews​ conforms to the ​PreviewProvider​ which enables to
create previews. The only requirement for the PreviewProvider protocol is to provide
implementation of static property called ​previews​. The previews property is going to
return the view whose preview is meant to be created.

Please note that Xcode previews construct the actual view by calling the view in the
previews property. It is not an emulation of the view, it is the actual view.

Going back to the implementation of ContentView. If you try to add another Text view
then it will give you an error indicating that this is not a valid operation as shown in
Listing 15.

1. struct​ ContentView ​:​ View ​{
2. ​var​ body​:​ some View ​{
3. Text​(​"Hello World"​)
4. Text​(​"Bye World"​)​ ​// causes an error
5. ​}
6. }

Listing 15: Error when trying to return multiple items from body

The reason is that two or more elements cannot be at the same parent level. In order to
accommodate multiple childs inside a view we will take help from Stack. Stacks are
layout container views which means that their primary purpose is to help with the layout
of the view. They are also container views, which means they can contain other child
views. In SwiftUI framework, stacks comes in three different flavours. This includes
ZStack​, ​HStack​ and ​VStack​.

44

HStack​ is also known as horizontal stack. The main purpose of HStack is to arrange
elements horizontally. ​Figure 9​ shows the stacking order of HStack.

VIEW 1 VIEW 2 VIEW 3

Figure 9: Horizontal stacks

VStack​ or vertical stack is used to stack items vertically. ​Figure 10​ shows the stacking
order of VStack.

VIEW 1

VIEW 2

VIEW 3

Figure 10: Vertical stacks

Finally, ​ZStack​ is used to stack items behind or infront of each other. This is
demonstrated in ​Figure 11​.

Figure 11: ZStack is used to stack views in front or behind each other

Now, that you have a basic understanding of stacks let’s go ahead and use it in our
SwiftUI application. ​Listing 16​ shows how we have stacked two Text views on top of
each other.

45

1. struct​ ContentView ​:​ View ​{
2. ​var​ body​:​ some View ​{
3. VStack ​{
4. Text​(​"Hello World"​)
5. Text​(​"Bye World"​)
6. ​}
7. ​}
8. }

Listing 16: Placing views in vertical stack

The output is shown in ​Figure 12​.

Figure 12: Text views embedded inside in a VStack

You can also command click on a particular view and embed it inside different kinds of
controls as shown in ​Figure 13​.

46

Figure 13: Embedding views in stacks from within Xcode

Similarly, you can use HStack to embed elements in horizontal direction as shown in
Listing 17​.

1. struct​ ContentView ​:​ View ​{
2. ​var​ body​:​ some View ​{
3.
4. HStack ​{
5. Text​(​"First Item"​)
6. Text​(​"Second Item"​)
7. ​}
8. ​}
9. }

Listing 17: Embedding views inside HStack

47

The result is shown in ​Figure 14​.

Figure 14: Text views embedded inside horizontal stack

ZStack is a little different because it allows to layer items on top of each other. Take a
look at ​Listing 18​, which shows how to add three Button views stacked on top of each
other.

1. struct​ ContentView ​:​ View ​{
2. ​var​ body​:​ some View ​{
3.
4. ZStack ​{
5.
6. Button​(​"VIEW 1"​)​ ​{
7.
8. ​}​.​padding​(​100​)
9. .​background​(​Color.​orange​)
10.
11. Button​(​"VIEW 2"​)​ ​{

48

12.
13. ​}​.​padding​(​100​)
14. .​background​(​Color.​blue​)
15. .​offset​(​y​:​ ​50​)
16.
17. Button​(​"VIEW 3"​)​ ​{
18.
19. ​}​.​padding​(​100​)
20. .​background​(​Color.​yellow​)
21. .​offset​(​y​:​ ​100​)
22.
23.
24. ​}
25.
26. ​}
27. }

Listing 18: Stacking views on top of each other using ZStack

The result is shown in ​Figure 15​.

Figure 15: Stacking views on top of each other using ZStack

49

Stacks serves as an essential layout view in SwiftUI and It allows to structure and align
other parts of your app in a seemingly easy way. In the next chapter you will learn about
List view, which is used for creating and displaying multiple items in a view. You will
also realize how stacks become an important and integrate layout containers for
designing and structuring your iOS applications.

50

Lists and Navigation

One of the most common operations in iOS development is to display a scrolling list of
items. In UIKit this was accomplished by using the UITableView control. In SwiftUI, this
is performed by List view.

Similar to SwiftUI Stack, List serves as a container view, which means it can have child
views. Having worked with UIKit’s UITableView control, you will find working with List a
great experience. Let’s start our journey by displaying a list of numbers in a List.

1. struct​ ContentView​:​ View ​{
2. ​var​ body​:​ some View ​{
3.
4. List​(​1​...​10​,​ id​:​ \.​self​)​ ​{​ index ​in
5. Text​(​"Item Number - \(index)"​)
6. ​}
7. ​}
8. }

Listing 19: Implementing a simple list to display items based on range

The result is shown in ​Figure 16​.

51

Figure 16: Displaying a simple using List view

Wow! We were able to achieve all that with just a few lines of code without having to
setup any delegates or data sources.

The List view requires two arguments, which includes the collection and the keypath to
uniquely identify them. For the first argument, we passed a closed range and for the
second argument we passed ​.\self​ to identify each value based on their hash. In the
next example let’s check out how we can create a List based on custom objects.

Populating List Using Custom Objects

Custom model objects are used to represent the domain of your application. In this
example we will populate our List with custom objects.

52

The first task is to create a class or struct to represent our custom object. Let’s create a
class called Country which will represent a particular country in the world as shown in
Listing 20​.

1. import​ Foundation
2.
3. struct​ Country ​{
4.
5. ​let​ flag​:​ ​String
6. ​let​ continent​:​ ​String
7. ​let​ name​:​ ​String
8.
9. }

Listing 20: Implementing of Country model

Since, we are not connected to any database and not consuming any web service we
will have to come up with country instances ourselves. Inside the Country struct we
have added a static function called “​all​” which will be responsible for returning
hard-coded Country objects as shown in ​Listing 21​.

extension​ Country ​{

 ​static​ ​func​ all​()​ ​->​ ​[​Country​]​ ​{

 ​return​ ​[
 Country​(​flag​:​ ​"�" ,​ continent​:​ ​"Asia"​,​ name​:​ ​"Pakistan"​),
 Country​(​flag​:​ ​"󾓦" ,​ continent​:​ ​"North America"​,​ name​:
"USA"​),
 Country​(​flag​:​ ​"�" ,​ continent​:​ ​"South America"​,​ name​:
"Brazil"​),
 Country​(​flag​:​ ​"󾓭" ,​ continent​:​ ​"Asia"​,​ name​:​ ​"Chine"​)
 ​]

 ​}

}

Listing 21: Returning a list of countries

Finally, a good use of emojis ;)

53

Now, let’s jump into ContentView and see how we can iterate through all the countries
and display them in a List control. The implementation is shown in ​Listing 22​.

1. struct​ ContentView​:​ View ​{
2.
3. ​var​ countries = Country.​all​()
4.
5. ​var​ body​:​ some View ​{
6.
7. List​(​self​.​countries​,​ id​:​ \.​name​)​ ​{​ country ​in
8. HStack ​{
9. Text​(​country.​flag​)
10. Text​(​country.​name​)
11. Spacer​()
12. Text​(​country.​continent​)
13. ​}
14. ​}
15. ​}
16. }

Listing 22: Displaying all countries in a List

One important thing to note is that we used the key path “​name​” to uniquely identify
each country. You can replace ​“.\name” ​with ​“.\self”​ but then you will have to
make sure that your country objects confirms to Hashable protocol.

Inside the List we used the HStack to arrange our items. We also used the Spacer view
to add flexible space between the views. ​Figure 17​ shows the List view populated with
countries.

54

Figure 17: List populated with countries

Sweet!

Although this works great and solves our needs but what if we needed to display a
header before the List. This header can be anything but for the sake of simplicity we will
display an image for the header. The problem is that List itself cannot accommodate
headers and footers on its own.

But we can use a ForEach inside the List, which will help us create views dynamically.
ForEach computes the views on demand based on the collection. The implementation is
shown in ​Listing 23​.

1. struct​ ContentView​:​ View ​{
2.
3. ​var​ countries = Country.​all​()

55

4.
5. ​var​ body​:​ some View ​{
6.
7. List ​{
8.
9. Image​(​"un"​)​.​resizable​()
10. .​frame​(​height​:​ ​300​)
11.
12. ForEach​(​self​.​countries​,​ id​:​ \.​name​)​ ​{​ country ​in
13.
14. HStack ​{
15. Text​(​country.​flag​)
16. Text​(​country.​name​)
17. Spacer​()
18. Text​(​country.​continent​)
19. ​}
20. ​}
21.
22. ​}
23. ​}
24. }

 ​Listing 23: ForEach to compute views dynamically based on the collection

The result is shown in ​Figure 18​.

56

Figure 18: Displaying a header in List using ForEach

Not complicated at all right!

This is a great starting point for our app. Unfortunately most of the apps don’t end on
one single screen. It would be great if we can tap on the cell and see more details about
the country. Let’s do that in the next section.

57

Adding Navigation

SwiftUI uses NavigationView to perform navigation in your apps. NavigationView is also
responsible for setting the title of the view. In most cases NavigationView becomes the
root view of your application. The code in ​Listing 24​ shows the implementation of a
NavigationView along with the title.

1. struct​ ContentView​:​ View ​{
2.
3. ​var​ countries = Country.​all​()
4.
5. ​var​ body​:​ some View ​{
6.
7. NavigationView ​{
8.
9. List ​{
10.
11. Image​(​"un"​)​.​resizable​()
12. .​frame​(​height​:​ ​300​)
13.
14. ForEach​(​self​.​countries​,​ id​:​ \.​name​)​ ​{​ country ​in
15.
16. HStack ​{
17. Text​(​country.​flag​)
18. Text​(​country.​name​)
19. Spacer​()
20. Text​(​country.​continent​)
21. ​}
22. ​}
23.
24. ​}
25. .​navigationBarTitle​(​"Countries"​)
26. ​}
27. ​}
28. }

Listing 24: NavigationView in SwiftUI

As you can see we added NavigationView as the root view of our app. We also added
the title for your view by using ​.navigationBarTitle​.

58

Figure 19​ shows the result.

Figure 19: Navigation view with large title

If you are not interested in large titles then you can pass the display mode and set the
value inline as shown in ​Listing 25​.

.​navigationBarTitle​(​"Countries"​,​ displayMode​:​ .​inline​)
At present we cannot tap on the cells. Before making the cells tappable, let’s perform a
refactoring of our existing code.

59

Command click on the HStack and select “​Extract Subview​” option. Extract subview is
going to extract a subview and put it underneath the current view. Unfortunately, our
application will not compile and return a lot of errors. The reason is simple! The
extracted view does not have access to the country object. This can be easily fixed by
introducing the country property on the extracted subview. We will also rename our
extracted view to “​CountryView​” as shown in ​Listing 26​.

1. struct​ ContentView​:​ View ​{
2.
3. ​var​ countries = Country.​all​()
4.
5. ​var​ body​:​ some View ​{
6.
7. NavigationView ​{
8.
9. List ​{
10.
11. Image​(​"un"​)​.​resizable​()
12. .​frame​(​height​:​ ​300​)
13.
14. ForEach​(​self​.​countries​,​ id​:​ \.​name​)​ ​{​ country ​in
15.
16. CountryView​(​country​:​ country​)
17. ​}
18.
19. ​}
20. .​navigationBarTitle​(​"Countries"​,​ displayMode​:

.​inline​)
21. ​}
22. ​}
23. }
24.
25. struct​ CountryView​:​ View ​{
26.
27. ​let​ country​:​ Country
28.
29. ​var​ body​:​ some View ​{
30. HStack ​{
31. Text​(​country.​flag​)
32. Text​(​country.​name​)
33. Spacer​()

60

34. Text​(​country.​continent​)
35. ​}
36. ​}
37. }

Listing 26: CountryView extracted

Next step is to add navigation to our cells. Simply wrap the HStack with NavigationLink
so we can tap on the cell and proceed to the destination screen. ​Listing 27​ shows the
implementation of NavigationLink.

1. struct​ ContentView​:​ View ​{
2.
3. ​var​ countries = Country.​all​()
4.
5. ​var​ body​:​ some View ​{
6.
7. NavigationView ​{
8.
9. List ​{
10.
11. Image​(​"un"​)​.​resizable​()
12. .​frame​(​height​:​ ​300​)
13.
14. ForEach​(​self​.​countries​,​ id​:​ \.​name​)​ ​{​ country ​in
15. NavigationLink​(​destination​:​ Text​(​country.​name​))​ ​{
16. CountryView​(​country​:​ country​)
17. ​}
18. ​}
19.
20. ​}
21. .​navigationBarTitle​(​"Countries"​,​ displayMode​:

.​inline​)
22. ​}
23. ​}
24. }

Listing 27: NavigationLink to link pages
NavigationLink embeds the CountryView because we want tap anywhere on the
CountryView and proceed to the destination. The first argument is the destination, which
is simply a Text view. The second argument is the CountryView which indicates that we
need to tap on the CountryView to proceed to our destination.

61

Go ahead and run the application and tap on the cell. You will notice that a push
navigation takes place and shows you a destination view with the name of the country.
This is great but we can make it even better. Instead of showing a Text view in the
destination, we can create a detail screen.

Add a new SwiftUI file to your project and name it “​CountryDetailView​”. The
implementation of the detail screen is shown in ​Listing 28​.

1. import​ SwiftUI
2.
3. struct​ CountryDetailView​:​ View ​{
4.
5. ​var​ country​:​ Country
6.
7. ​var​ body​:​ some View ​{
8. VStack ​{
9. Text​(​country.​flag​)
10. .​font​(​.​custom​(​"Arial"​,​ size​:​ ​100​))
11.
12. Text​(​country.​name​)
13. ​}
14. ​}
15. }
16.
17. #if DEBUG
18. struct​ CountryDetailView_Previews​:​ PreviewProvider ​{
19. ​static​ ​var​ previews​:​ some View ​{
20. CountryDetailView​(​country​:​ Country​(​flag​:​ ​"�" ,

continent​:​ ​"Asia"​,​ name​:​ ​"Pakistan"​))
21. ​}
22. }
23. #endif

Listing 28: CountryDetailView

The CountryDetailView displays the flag of the country and the name of the country
using the Text view. In order to create an instance of CountryDetailView you need to
pass the country instance to the view. ​Listing 29​ shows how to use the
CountryDetailView as a destination view from within the ContentView.

1. struct​ ContentView​:​ View ​{

62

2.
3. ​var​ countries = Country.​all​()
4.
5. ​var​ body​:​ some View ​{
6.
7. NavigationView ​{
8.
9. List ​{
10.
11. Image​(​"un"​)​.​resizable​()
12. .​frame​(​height​:​ ​300​)
13.
14. ForEach​(​self​.​countries​,​ id​:​ \.​name​)​ ​{​ country ​in
15. NavigationLink​(​destination​:

CountryDetailView​(​country​:​ country​))​ ​{
16. CountryView​(​country​:​ country​)
17. ​}
18. ​}
19.
20. ​}
21. .​navigationBarTitle​(​"Countries"​,​ displayMode​:

.​inline​)
22. ​}
23. ​}
24. }

Listing 29: Using CountryDetailView as the destination

Go ahead and run the application again! This time you will notice that when you tap on
a cell, you are taken the CountryDetailView which shows the flag of the country along
with the name of the country. ​Figure 20​ shows the CountryDetailView as the destination
view.

63

Figure 20: CountryView as the destination view

And that’s how simple it is to implement navigations in SwiftUI framework. SwiftUI
makes it easy to perform navigation without the need of segues or navigation
controllers.

Please note that under the hood SwiftUI does use NavigationController but all of that
complexity is hidden when using SwiftUI framework.

At present we have used controls which can display values on the view. But what about
interactive controls. Controls that changes and maintain states. In the next chapter we
are going to take a deep dive into the concept of data flow in SwiftUI applications.

64

State Management in SwiftUI

State represents the data associated with the view. It can be represented by a primitive
type like Boolean, String, Int etc or a complex object like a view model. In SwiftUI,
changing a state value causes the view to re-render allowing the view to sync with the
data.

Similar concepts are available in ReactJS and Flutter, where changing the state causes
render and build functions to fire respectively.

Let’s take a look at a simple example of state in SwiftUI in ​Listing 30​. In this example
we will allow the user to toggle a switch. Based on the status of the switch the icon will
change between night and day.

1. struct​ ContentView​:​ View ​{
2.

3. @State ​private​ ​var​ isOn​:​ ​Bool​ = ​false
4.

5. ​var​ body​:​ some View ​{
6.

7. VStack ​{
8.

9. Toggle​(​isOn​:​ $isOn​)​ ​{
10. Text​(​""​)
11. ​}​.​labelsHidden​()
12.

13. Text​(​self​.​isOn​ ? ​"🌞"​ ​:
"🌙"​)​.​font​(​.​custom​(​"Arial"​,​ size​:​ ​100​))

14.

15. ​}
16.

17. ​}
18. }

Listing 30: Toggling State in SwiftUI

65

The important part in this example is the use of ​@State​ property wrapper on the ​isOn
boolean property. We have also marked it with private keyword indicating that this state
is a local/private state for the ​ContentView​ component.

The Toggle view takes in a ​Binding<Bool>​, which is satisfied by passing the ​isOn
state property. When Toggle changes the state between on or off the state value gets
updated, rendering the view again.

The result is shown in ​Figure 21​:

Figure 21: Toggle states ON and OFF

Great!

Now that you have some basic understanding of state, let’s see how we can capture
multiple pieces of information using state.

66

Adding More Variables

The ​Register​ view is implemented in ​Listing 31​. It includes all the basic elements for
registering a new user. To keep this example simple we are using basic SwiftUI
elements like ​TextField​ etc. In your actual application you can use the power of ​Form
view available in SwiftUI framework.

1. struct​ Register​:​ View ​{
2.
3. @State ​private​ ​var​ firstName​:​ ​String​ = ​""
4. @State ​private​ ​var​ lastName​:​ ​String​ = ​""
5. @State ​private​ ​var​ username​:​ ​String​ = ​""
6. @State ​private​ ​var​ password​:​ ​String​ = ​""
7.
8.
9. ​var​ body​:​ some View ​{
10.
11. NavigationView ​{
12.
13. VStack ​{
14. TextField​(​"First Name"​,​ text​:

self​.$firstName​)
15. TextField​(​"Last Name"​,​ text​:

self​.$lastName​)
16. TextField​(​"User Name"​,​ text​:

self​.$username​)
17. SecureField​(​"Password"​,​ text​:

self​.$password​)
18. Button​(​"Register"​)​ ​{
19. ​// register the user
20. ​}
21.
22. ​}​.​padding​()
23.
24. .​navigationBarTitle​(​"Register"​)
25. ​}
26.
27. ​}
28. }

Listing 31: Register view

67

The state of the ​Register​ view is controlled by four independent variables. Each
variable captures a slice of the state. As the user types in the ​TextFields​, the state
variables gets updated.

This mostly works great! But we have to deal with four independent variables, which
represent a single model. This can be simplified by introducing a view model which
represents the state of the view.

SwiftUI and MVVM

Although, you can use any design pattern to build your SwiftUI application but the
recommended pattern is ​Presentation Model​, also known as MVVM. In MVVM design
pattern you will start by creating a view model which will be responsible for providing
data to the view and managing the state associated with the view.

The implementation of ​RegistrationViewModel​ is shown in ​Listing 32​.

1. struct​ RegistrationViewModel ​{
2.
3. ​var​ firstName​:​ ​String​ = ​""
4. ​var​ lastName​:​ ​String​ = ​""
5. ​var​ username​:​ ​String​ = ​""
6. ​var​ password​:​ ​String​ = ​""
7.
8. }

Listing 32: RegistrationViewModel

Now, we can update the ​Register​ view and utilize our newly created
RegistrationViewModel ​as shown in Listing ​32.1​.

https://martinfowler.com/eaaDev/PresentationModel.html

68

1. import​ SwiftUI
2.
3. struct​ RegistrationViewModel ​{
4. ​var​ firstName​:​ ​String​ = ​""
5. ​var​ lastName​:​ ​String​ = ​""
6. ​var​ username​:​ ​String​ = ​""
7. ​var​ password​:​ ​String​ = ​""
8. }
9.
10.
11. struct​ Register​:​ View ​{
12.
13. @State ​private​ ​var​ registrationVM​:​ RegistrationViewModel

= RegistrationViewModel​()
14.
15. ​var​ body​:​ some View ​{
16.
17. NavigationView ​{
18.
19. VStack ​{
20. TextField​(​"First Name"​,​ text​:

self​.$registrationVM.​firstName​)
21. TextField​(​"Last Name"​,​ text​:

self​.$registrationVM.​lastName​)
22. TextField​(​"User Name"​,​ text​:

self​.$registrationVM.​username​)
23. SecureField​(​"Password"​,​ text​:

self​.$registrationVM.​password​)
24. Button​(​"Register"​)​ ​{
25. ​// register the user
26. ​}
27.
28. ​}​.​padding​()
29.
30. .​navigationBarTitle​(​"Register"​)
31. ​}
32.
33. ​}
34. }

Listing 32.1: RegistrationViewModel used by Register view

As you can see our ​Register​ view is now much simpler and the
RegistrationViewModel​ is responsible for maintaining the state of the view. We have

69

removed the individual slices of state variables and replaced it with a single view model.
Now anytime a user updates any of the ​TextField​, the view model gets updated
automatically. The MVVM design pattern allows to cleanly structure your SwiftUI
application and at the same time making it easier to write unit tests.

But what if you wanted to change the state of the parent from a child view. This is
performed by ​@Binding​ property wrapper, which is explained in the next section.

@Binding

A single view in SwiftUI may be composed of multiple child views. Sometimes you want
to allow the child to change the state of the parent view. Binding allows you to pass
state from the parent view to the child view. Once the child view alters the state, the
parent automatically gets the updated copy and re-renders the view. Let’s implement
the same day/night example as before but this time we will put the Toggle view into a
child view called “​DayNightView​”.

The implementation of ​DayNightView​ is shown in ​Listing 33​.

1. import​ SwiftUI
2.
3. struct​ DayNightView​:​ View ​{
4.
5. @Binding ​var​ isOn​:​ ​Bool
6.
7. ​var​ body​:​ some View ​{
8. Toggle​(​isOn​:​ $isOn​)​ ​{
9. Text​(​""​)
10. ​}​.​labelsHidden​()
11. ​}
12. }
13.
14. struct​ DayNightView_Previews​:​ PreviewProvider ​{
15. ​static​ ​var​ previews​:​ some View ​{
16. DayNightView​(​isOn​:​ .​constant​(​false​))
17. ​}
18. }

Listing 33: DayNightView using @Binding

70

The property wrapper ​@Binding​ indicates that the ​isOn​ property will be passed to the
DayNightView​. Once the ​DayNightView​ changes the ​isOn​ property then the original
sender will be notified by re-rendering the view.

Assigning the ​isOn​ property will cause render to get called on the parent view

The parent view’s implementation is shown in ​Listing 34​:

1. struct​ ContentView​:​ View ​{
2.
3. @State ​private​ ​var​ isOn​:​ ​Bool​ = ​false
4.
5. ​var​ body​:​ some View ​{
6.
7. ​return​ VStack ​{
8.
9. Text​(​self​.​isOn​ ? ​"🌞"​ ​:​ ​"🌙"​)
10. .​font​(​.​custom​(​"Arial"​,​ size​:​ ​100​))
11.
12. DayNightView​(​isOn​:​ $isOn​)
13.
14. ​}
15.
16. ​}
17. }

Listing 34: Updating parent view through @Binding

DayNightView​ will be responsible for displaying the Toggle switch. ​DayNightView
takes a binding as an argument. We have passed the ​@State​ property ​isOn​ to the
DayNightView​. This means when the ​DayNightView​ updates the bindable property,
state property ​isOn​ in the parent view also gets updated.

The main purpose of ​@Binding​ is to pass the state to a child view where it can be
updated. This gives child view(s) an opportunity to communicate with the parent and
update the parent.

@Observable and @Observed

71

Most of the apps fetch their data from an outside source, mainly using JSON Web API.
Once the data is downloaded it is populated in a DTO (Data Transfer Object) and later
mapped to the view models and then displayed on the screen.

One common issue with consuming asynchronous requests is to notify the user
interface that data has been downloaded so the view can display fresh data. SwiftUI
solves this problem by introducing ​Observable​ and ​Observed​ property wrappers.

Before jumping into ​Observable​ and ​Observed​ property wrappers we must find a way
to perform asynchronous requests to fetch data. For the sake of simplicity we are going
to make a fake request and get a list of posts in an asynchronous manner as shown in
Listing 35​.

1. struct​ Post ​{
2. ​let​ id = UUID​()​.​uuidString
3. ​let​ title​:​ ​String
4. ​let​ body​:​ ​String
5. }
6.
7. class​ Webservice ​{
8.
9. ​func​ fetchPosts​(​completion​:​ @escaping ​([​Post​])​ ​->​ ​Void​)​ ​{
10.
11. DispatchQueue.​main​.​asyncAfter​(​deadline​:​ .​now​()​ ​+​ ​2.0​)

{
12. ​// fetch from a web api and then populate the

Post array
13. ​let​ posts = ​[
14. Post​(​title​:​ ​"Hello SwiftUI"​,​ body​:​ ​"Learn to

create your first SwiftUI App!"​),
15. Post​(​title​:​ ​"Getting started with Combine"​,

body​:​ ​"Introduce reactive programming using Combine framework"​)
16. ​]
17.
18. completion​(​posts​)
19. ​}
20.
21. ​}
22.
23.
24. }

72

Listing 35: Webservice returning fake posts

The ​Webservice​ simply waits for 2 seconds and then sends hardcoded list of posts
back to the user in a completion handler.

The ​Webservice​ class is used by ​PostListViewModel​ to perform the request. The
implementation of ​PostListViewModel​ is shown in ​Listing 36​.

1. class​ PostListViewModel​:​ ObservableObject ​{
2.
3. ​let​ webservice = Webservice​()
4. @Published ​var​ posts = ​[​PostViewModel​]()
5.
6. func ​fetchPosts​()​ ​{
7. ​self​.​webservice​.​fetchPosts​ ​{​ posts ​in
8. ​self​.​posts​ = posts.​map​(​PostViewModel.​init​)
9. ​}
10. ​}
11.
12. }
13.
14. struct​ PostViewModel ​{
15.
16. ​let​ id = UUID​()​.​uuidString
17. ​let​ post​:​ Post
18.
19. ​var​ title​:​ ​String​ ​{
20. ​return​ ​self​.​post​.​title
21. ​}
22.
23. ​var​ body​:​ ​String​ ​{
24. ​return​ ​self​.​post​.​body
25. ​}
26.
27. }

Listing 36: Calling webservice through view model

The ​PostListViewModel​ represents the data, which will be displayed on the post listing
screen. The most important thing to notice is the use of ​ObservableObject​ protocol.
The ​ObservableObject​ protocol allows the class to publish events. The posts property

73

is also decorated with ​@Published​ property wrapper, which means it acts like a
publisher. When a value is assigned to the posts property, it publishes an event
indicating that it has been changed.

Finally, the ​PostListView​ uses the ​PostListViewModel​ to fetch and display the posts
in a view as implemented in ​Listing 37​:

1. struct​ PostListView​:​ View ​{
2.
3. @ObservedObject ​private​ ​var​ postListVM = PostListViewModel​()
4.
5. init() {
6. self.postListVM.fetchPost()

 }

7. ​var​ body​:​ some View ​{
8. List​(​postListVM.​posts​,​ id​:​ \.​id​)​ ​{​ post ​in
9. VStack​(​alignment​:​ .​leading​,​ spacing​:​ ​10​)​ ​{
10. Text​(​post.​title​)​.​font​(​.​headline​)
11. Text​(​post.​body​)
12. ​}
13. ​}
14. ​}
15. }
16.
17. struct​ PostListView_Previews​:​ PreviewProvider ​{
18. ​static​ ​var​ previews​:​ some View ​{
19. PostListView​()
20. ​}
21. }

Listing 37: Displaying posts in PostListView

If you run the application, ​PostListView​ is going to use ​PostListViewModel​ and
populate the list of posts in a List view. The MVVM design pattern along with the ability
to publish and notify the changes makes syncing the view with the view model much
easier.

At present we have only discussed local state, which represents the state maintained
and available to a particular view. If you need to change the state of the view from
another view you can pass it as an argument and using the ​@Binding​ property wrapper.
This works great if you are passing the state between few views but quickly become a

74

hassle when several views are involved or when you need to pass the state to a deeply
nested view in the hierarchy.

In the next section we are going to look at global state, which can be accessible from
any SwiftUI view.

@EnvironmentObject

The concept of an ​EnvironmentObject​ is very similar to ​Redux​. The main purpose of
an ​EnvironmentObject​ is to maintain global state. Global state is a state that can be
accessed from any view. The ​EnvironmentObject​ is usually injected at the top level
view making the global state to be available to all child views.

To keep the example simple we are going to create a class called ​UserSettings​, which
will be shared between multiple views. We will implement three different views namely
Facebook, Twitter and TotalLikes. The Facebook and Twitter views will allow the user to
increment likes and TotalLikes view will be responsible for displaying the total likes.

The implementation of ​UserSettings​ class is shown in ​Listing 38​.

1. import​ Foundation
2.
3. class​ UserSettings​:​ ObservableObject ​{
4. @Published ​var​ likes​:​ ​Int​ = ​0
5. }

Listing 38: Implementation of UserSettings object

The ​UserSettings​ class is using the ​ObservableObject​ protocol, which means it can
publish events. The only property in ​UserSettings​ class is ​likes​ which is decorated
with ​@Published​ property wrapper indicating that it will act as a publisher and will notify
the subscribers when the value changes.

Before using ​UserSettings​, we need to inject it into the parent view. Open
SceneDelegate.swift​ and implement the code shown in ​Listing 39​.

1. if​ ​let​ windowScene = scene ​as​? UIWindowScene ​{

75

2. ​let​ window = ​UIWindow​(​windowScene​:​ windowScene​)
3. ​let​ userSettings = UserSettings​()
4. ​let​ contentView =

ContentView​()​.​environmentObject​(​userSettings​)
5. window.​rootViewController​ =

UIHostingController​(​rootView​:​ contentView​)
6. ​self​.​window​ = window
7. window.​makeKeyAndVisible​()
8. ​}

Listing 39: Injecting global object in ContentView

Once injected in the ​ContentView​, the ​UserSettings​ object will be available to the
ContentView​ and all the views inside ​ContentView​. Next we will implement Facebook
and Twitter view as shown in ​Listing 40.

1. import​ SwiftUI
2.
3. struct​ Facebook​:​ View ​{
4.
5. @EnvironmentObject ​var​ userSettings​:​ UserSettings
6.
7. ​var​ body​:​ some View ​{
8.
9. VStack ​{
10. Text​(​"Facebook"​)
11. Button​(​"👍"​)​ ​{
12. ​self​.​userSettings​.​likes​ ​+=​ ​1
13. ​}
14. ​}
15. ​}
16. }
17.
18. struct​ Twitter​:​ View ​{
19.
20. @EnvironmentObject ​var​ userSettings​:​ UserSettings
21.
22. ​var​ body​:​ some View ​{
23.
24. VStack ​{
25. Text​(​"Twitter"​)
26. Button​(​"👍"​)​ ​{
27. ​self​.​userSettings​.​likes​ ​+=​ ​1

76

28. ​}
29. ​}
30. ​}
31. }

Listing 40: Implementation of Twitter and Facebook view

The interesting thing to note is the usage of ​@EnvironmentObject​ property wrapper.
The userSettings instance will be automatically populated from the parent view. When
you increment the likes property then it will be incremented globally for all the views
interested in the ​UserSettings​ global state.

The updates to the global state will also cause the views to render again
automatically

The ​TotalLikes​ view is responsible for displaying the value of ​likes ​property.

Finally, the Twitter and Facebook views are used inside the ContentView as shown in
Figure 22​.

77

Figure 22: Global state updated from different views

Awesome!

You were able to share the state between multiple views by using global state in
SwiftUI. ​EnvironmentObject​ is idol when you want to share data with multiple views,
especially if those views are nested deep into the view hierarchy.

78

Getting Started with SwiftUI and MVVM

In the previous chapters you learned about the MVVM Design Pattern, SwiftUI and state
management in SwiftUI. Now it is time to look at how MVVM pattern can be integrated
with a SwiftUI application. In this chapter we will start with a very basic counter
application using SwiftUI and MVVM Design Pattern. The point of this chapter is to get
comfortable with different components of MVVM and how it fits with the SwiftUI
framework.

View

The view for our counter app is pretty simple. It consists of a single ​Text​ label and two
Button​ views. One button is to increment the counter and the other is to decrement the
counter. The complete code for the view is shown in ​Listing 41​.

79

1. struct​ ContentView​:​ View ​{
2.
3. ​var​ body​:​ some View ​{
4. VStack ​{
5. Text​(​"Counter will be displayed here"​)
6.
7. HStack ​{
8. Button​(​"Increment"​)​ ​{
9.
10. ​}
11. Button​(​"Decrement"​)​ ​{
12.
13. ​}
14. ​}
15. ​}
16. ​}
17. }

Listing 41: The SwiftUI code for counter view

ContentView when rendered is shown in ​Figure 23​.

80

Figure 23: ContentView

Next step is to create a model, which will be responsible for providing the updated
counter value.

Implementing Counter Model

The ​Counter​ model consists of separate functions for increment and decrement
operations. The value property represents the updated/current value of the counter. The
complete implementation of the ​Counter​ model is shown in ​Listing 42​.

81

1. import​ Foundation
2.
3. struct​ Counter ​{
4.
5. ​var​ value​:​ ​Int
6.
7. ​mutating​ ​func​ increment​()​ ​{
8. value ​+=​ ​1
9. ​}
10.
11. ​mutating​ ​func​ decrement​()​ ​{
12. value ​-=​ ​1
13. ​}
14.
15.
16. }

 ​Listing 42: Counter model implementation

If you want to add any business rules that needs to validate the counter value then you
can add those in the increment and decrement functions. The ​Counter​ model will be
used by the ​CounterViewModel​, which will be responsible for updating the values on
the view.

Implementing CounterViewModel

The primary task of ​CounterViewModel​ is to provide updated data to the view.
CounterViewModel​ will also expose increment and decrement functions which can be
called from the view.

The implementation of ​CounterViewModel​ is shown in ​Listing 43​.

1. import​ Foundation
2.
3. class​ CounterViewModel​:​ ObservableObject ​{
4.
5. @Published ​var​ counter​:​ Counter = Counter​(​value​:​ ​0​)
6.
7. ​var​ value​:​ ​Int​ ​{

82

8. ​return​ ​self​.​counter​.​value
9. ​}
10.
11. ​func​ increment​()​ ​{
12. ​self​.​counter​.​increment​()
13. ​}
14.
15. ​func​ decrement​()​ ​{
16. ​self​.​counter​.​decrement​()
17. ​}
18. }

Listing 43: Implementation of CounterViewModel

There are a couple of interesting things about ​CounterViewModel​. First, it is decorated
with ​ObservableObject​ protocol. The ​ObservableObject​ protocol is new in iOS 13
and it allows an object to dispatch events. This means other parts of the code can
observe instances of ​CounterViewModel​. The counter object is marked with
@Published​ property wrapper, which means that anytime the counter value is altered, it
will publish an event. That event can be handled by the view to keep the user interface
in-sync with the data.

The view has been updated to make use of the ​CounterViewModel​ as shown in ​Listing
44​.

1. struct​ ContentView​:​ View ​{
2.
3. @ObservedObject ​private​ ​var​ counterVM​:​ CounterViewModel =

CounterViewModel​()
4.
5. ​var​ body​:​ some View ​{
6. VStack ​{
7. Text​(​"\(self.counterVM.value)"​)
8.
9. HStack ​{
10. Button​(​"Increment"​)​ ​{
11. ​self​.​counterVM​.​increment​()
12. ​}
13. Button​(​"Decrement"​)​ ​{
14. ​self​.​counterVM​.​decrement​()

83

15. ​}
16. ​}
17. ​}
18. ​}
19. }

Listing 44: ContentView Using CounterViewModel

The first thing to note is the​ @ObservedObject​ property wrapper. The
@ObservedObject​ property wrapper is going to make sure that when the
CounterViewModel​ publishes an event then the ​ObservedObject​ gets the updated
value. This also causes the view to be rendered again, thus giving you an opportunity to
update and sync the view with the underlying data.

Once the user clicks the increment or decrement button, it updates the counter value in
CounterViewModel​. Since the counter property is marked with ​@Published​, it
publishes an event which is handled in the ​ContentView​. Finally, the ​Text​ view
displays the updated value of the counter. The result is shown in ​Figure 24​:

84

Figure 24: Counter value updated

In this chapter, you learned how to implement MVVM design patterns in a simple
SwiftUI application. In the next chapter, we are going to combine everything we have
learned to build a real world Notes application using SwiftUI, MVVM and Networking.

